|
About
Ŝalenzo Website (3)
Subscribe
Subscribe to a syndicated feed of my weblog,
brought to you by the wonders of RSS.
Links
These are a few of my favourite links.
raelity bytes ;-)
link 2
link 3
|
实验性的数学公式支持 / 在网页上渲染数学公式的另类解决方案
为了免去MathJax丑陋又缓慢的“正在渲染数学”提示,切实提升页面加载速度,同时调整公式的字体以免MathJax默认的TeX字体与页面的其余部分格格不入,仅使用MathJax将LaTeX公式转换到MathML。虽然MathML标准已经有好些年头了,但是浏览器支持仍旧一塌糊涂,不少屑东西明确表示拒绝支持。我想,借助现今更为先进的CSS排版功能,能否不用JavaScript测量文本尺寸就渲染出漂亮——至少是不难看——的数学公式呢?

这可是纯CSS实现的可伸缩大括号哦!这些字符是各种正文字体通用的,因为用CSS也画不出更具特色的符号了。
MathJax的文档写得真是烂爆了……
支持下列标签:
- [ ]
<math>
- [ ]
<merror>
- [ ]
<mfrac>
- [ ]
<mi>
- [ ]
<mmultiscripts>
- [ ]
<mn>
- [ ]
<mo>
- [ ]
<mover>
- [ ]
<mpadded>
- [ ]
<mphantom>
- [ ]
<mprescripts>
- [ ]
<mroot>
- [ ]
<mrow>
- [ ]
<ms>
- [ ]
<mspace>
- [ ]
<msqrt>
- [ ]
<mstyle>
- [ ]
<msub>
- [ ]
<msubsup>
- [ ]
<msup>
- [ ]
<mtable>
- [ ]
<mtd>
- [ ]
<mtext>
- [ ]
<mtr>
- [ ]
<munder>
- [ ]
<munderover>
- [ ]
<none>
绝对不会支持下列玩意:
dir="rtl"
<annotation>
<annotation-xml>
<maction>
<semantics>
is true. .
This mathematical formula with a big summation and the number pi [
\sum_{n=1}^{+\infty}\frac{1}{n^2}=\frac{\pi^2}{6}
] is easy to prove.
This mathematical formula with a big summation and the number pi (
\sum_{n=1}^{+\infty}\frac{1}{n^2}=\frac{\pi^2}{6}
) is easy to prove.


- Fill the blank:

- [\begin{vmatrix}
x & \binom{5}{3} \
\sqrt{7+2} & y \
\end{vmatrix}]





(no asymmetric delimiters in TeX)




![\sqrt[3]{\sqrt{\frac{1}{2}+4}}+0](
AAAAACH5BAEAAAAALAAAAABQAB0AAAT/EMgpBbuC6s27/2A4MQNAMGKqriyFtnAcn3JtfxdDjHnv
/8Ag8PahAQYvorKVfJFwwmh06drRLJmOkcoFWDDHJOdwkGy73GcHubsg0F2sRy4Rw4nIDx1gv9vU
a2J9fjF7HIB8MhctX1kieXMMjokdgxMDCQkegxYDSJNhhyWRk5aUHBYGpoNqkBUMB6MThqFmam6L
G5Zyq4cuLgNntbMMbxJkKoNIo726vxqGiHyqO2w8Ob4bCAojm9l1G9avoMdltBo+Cj51CTnqTj3v
2Kf0E8gSrhonA3tfkt/eKgEctK+OLGgo8ukwwSpEM3Sj8l1aeE5CABSImgAUyBGhp39jRcpIpGCB
DzlwzjYVy4WuQyMPNKRRyCNz2LMYpkKUBNnhwAJNGyoSAsFAFQgCCoyRrDkUxDKHO2YWLZCz6caO
IxDMs7ohAgA7AAAAAAAAAAAA
)







- [\frac{A}{2}=\begin{pmatrix}
1 & 2 & 3 \
4 & 5 & 6 \
7 & 8 & 9 \
\end{pmatrix}]
- [\left{\frac{1}{2}\right}]
- [\begin{bmatrix}
12 & 34 & 56 \
7 & 8 & 9 \
\end{bmatrix}^{\alpha}]


VS 

![A^{A^A}+\sqrt[A]{A}+\dfrac{A+\frac{A}{A}}{A}](
AAAAACH5BAEAAAAALAAAAACAAB8AAAT/EMhJq7046827/8CygGRpnqgnJEnqvnBcLcYo33ieCaOt
/8DYohAKGo0ikuAgQhyfuVXr4qMMFgMJFsqF0aoUcCgZQoi7aFUPc07fyMFhkWoR2e1uk9S4bIbt
Cnd5bzVBAQsCWmwbcHFtHzxzOjwEE22PAHt8LC5yVX13oY2MZlpmYphfQpeFKKBOEgIICFldj5GY
FJEYmhW4KIeJkgcIwr65P54eCFNUrTNElxuUlhJXxhXMGsh6TAuw07PYE7++3uAzpDbf7AG84hnc
JFe1W4wDV1TRFfRatekXePybMZBgvkVvyLCbts7Cqz/rStW5cChBMQsHDuxoiHDQIXeSjiQEU1Ti
DKIBCDTqQoThI0k6dUTJnDlzG5GXmRZUwrntTiBBK425ZHMzZKifeLqA8mNJIjt51TTwSDR1hzem
ME+MImGPpxcOxACk3DbwEVSHnFB0DSmEgywFF+OVjaf2GdeFpram4FaVDd4yes+uZDuIbhrBlvYV
XozjIePHL0YShkxZzc6DlTN7wPv0QwQAOwAAAAAAAAAAAA==
)
\mathbf{Ab}^\mathsf{T}
⋇
|